3-23-2004

An Analysis of the NYPD's Stop-and-Frisk Policy in the Context of Claims of Racial Bias

Jeffrey Fagan
Columbia Law School

Follow this and additional works at: http://lsr.nellco.org/columbia_pll

Part of the Criminal Law Commons, Human Rights Law Commons, Law and Society Commons, Public Law and Legal Theory Commons, and the Social Welfare Law Commons

Recommended Citation
http://lsr.nellco.org/columbia_pll/0595

This Article is brought to you for free and open access by the Columbia Law School at NELLCO Legal Scholarship Repository. It has been accepted for inclusion in Columbia Public Law & Legal Theory Working Papers by an authorized administrator of NELLCO Legal Scholarship Repository. For more information, please contact tracy.thompson@nellco.org.
An analysis of the NYPD’s stop-and-frisk policy in the context of claims of racial bias*

Andrew Gelman† Alex Kiss‡ Jeffrey Fagan§

March 23, 2004

Abstract

Recent studies by police departments and researchers confirm that police stop racial and ethnic minority citizens more often than whites, relative to their proportions in the population. However, it has been argued stop rates more accurately reflect rates of crimes committed by each ethnic group, or that stop rates reflect elevated rates in specific social areas such as neighborhoods or precincts. Most of the research on stop rates and police-citizen interactions has focused on traffic stops, and analyses of pedestrian stops are rare. In this paper, we analyze data from 175,000 pedestrian stops by the New York Police Department over a fifteen-month period. We disaggregate stops by police precinct, and compare stop rates by racial and ethnic group controlling for previous race-specific arrest rates. We use hierarchical multilevel models to adjust for precinct-level variability, thus directly addressing the question of geographic heterogeneity that arises in the analysis of pedestrian stops. We find that persons of African and Hispanic descent were stopped more frequently than whites, even after controlling for precinct variability and race-specific estimates of crime participation.

Keywords: criminology, hierarchical model, multilevel model, overdispersed Poisson regression, police stops, racial bias

*We thank the New York City Police Department, the New York State Division of Criminal Justice Services, and the Office of the New York State Attorney General for providing data for this research. Tamara Dumanovsky and Dong Xu made significant contributions to the analysis. Joe Bafumi, Rajeev Dehejia, Jim Liebman, Dan Rabinowitz, and Caroline Rosenthal Gelman provided helpful comments. Support for this research was provided in part by grants SES-9987748 and SES-0318115 from the National Science Foundation. All opinions are those of the authors.

†Department of Statistics and Department of Political Science, Columbia University, New York, gelman@stat.columbia.edu. http://www.stat.columbia.edu/~gelman/
‡Department of Biostatistics, Columbia University, New York
§Law School and School of Public Health, Columbia University, New York, jfagan@law.columbia.edu
1 Introduction: bias in police stops?

In the late 1990s, popular, legal, and political concerns were raised across the U.S. about police harassment of minority groups in their everyday encounters with law enforcement. These concerns focused on the extent to which police were stopping people on the highways for “driving while black” (see Weitzer, 2000, Harris, 2002, and Lundman and Kaufman, 2003). Additional concerns were raised about racial bias in pedestrian stops of citizens by police predicated on “zero tolerance” policies to control quality-of-life crimes and aggressive policing strategies—concentrated in minority communities—that targeted illegal gun possession and drug trafficking (see Fagan, Zimring and Kim, 1998, Greene, 1999, Skolnick and Caplovitz, 2001, Fagan and Davies, 2000, 2003, and Fagan, 2002). These practices prompted angry reactions among minority citizens that widened the racial breach between different racial/ethnic groups in their trust in the police (Lundman and Kaufman, 2003, Tyler and Huo, 2003, and Weitzer and Tuch, 2002), provoking a crisis of legitimacy with legal, moral and political dimensions (see Wang, 2001, Russell, 2002, and Harris, 2002).

Several recent studies have confirmed that police disproportionately stop minority citizens and, once stopped, are more likely to search or arrest them (Cole, 1999, Veneiro and Zoubeck, 1999, Harris, 1999, 2002, Zingraff et al., 2000). Racially disproportionate stops and searches by police take place in a wide range of everyday citizen transactions and movements (Sykes and Clark, 1976, Langan et al., 2001) and are perceived to be a problem by a majority of Americans as measured by Gallup polls in 1999 and 2003. Whether these contacts are racially motivated is a hotly contested question that has been the focus of public and private litigation, political mobilization, and self-scrutiny by several police departments (see Garrett, 2001, and Walker, 2001). Some background on this controversy and discussions of practical resolutions appear in Skolnick and Caplovitz (2001), Gross and Livingston (2002), and Fridell et al. (2001).

Police have defended racially disparate patterns of stops on the grounds that minorities commit disproportionately more crimes than whites (especially the types of crimes that capture the attention of police), and that the spatial concentration and disparate impacts of crimes committed by and against minorities justifies more aggressive enforcement in minority communities (MacDonald, 2001). Police cite these differences in crime rates to justify racial imbalances even in situations where they have a wide range of possible targets or where their suspicion of criminal activity would not otherwise justify a stop or search (Kennedy, 1997, Harcourt, 2001, Rudovsky, 2001). Using this logic, police claim that the
higher stop rates of African Americans and other minorities simply represent reasonable and efficient police practice (see, for example, Bratton and Knobler, 1998, Goldberg, 1999, and MacDonald, 2001). Police often point to the high rates of seizures of contraband, weapons, and fugitives in such stops, and also to a reduction of crime, to justify such aggressive policing (Kelling and Cole, 1996). Persico, Knowles, and Todd (2001) report that, of the drivers on Interstate 95 in Maryland stopped by police on suspicion of drug trafficking, African Americans were as likely as the whites to have drugs in their cars. Their conclusion was that the search for drugs was an efficient allocation of police resources, despite the disparate impacts of these stops on minority citizens (Lamberth, 1997, Ayres, 2002, Gross and Barnes, 2002).

Whether racially disparate stop rates reflect disproportionate crime rates or targeting by police of minorities at rates beyond what any racial differences in crime rates might justify, is the heart of the social and legal controversy on racial profiling and racial discrimination by police (Fagan, 2002, Ayres, 2002). Research to date on racial “profiling” in policing is relatively new, and has focused primarily on traffic stops. Stops of pedestrians have received far less research attention, despite the essential role of pedestrian stops in modern policing. Yet, both pedestrian and traffic stops are salient events, and the conduct of both types of police interdictions carries great weight in citizen assessments of the fairness and legitimacy of the police (Harris, 2002, Tyler and Huo, 2003). In an era of declining crime rates, contemporary policy debates on policing strategies often pivot on the evaluation of New York City’s aggressive policing strategy during the 1990s, a strategy designed on aggressive stops and searches of pedestrians for a wide range of crimes (Eck and Maguire, 2000, Skogan and Frydl, 2004).

This article focuses on a dispute about the New York City police department’s “stop and frisk” policy: the lawful practice of “temporarily detaining, questioning, and, at times, searching civilians on the street.” The Supreme Court has ruled police stop-and-frisk procedures to be constitutional under certain restrictions. The NYPD’s aggressive policing during the 1990s has been generally praised, but near the end of the decade there were repeated complaints of harassment of minority communities, especially by the elite Street Crimes Unit. These complaints came in the context of the well-publicized assault by police of Abner Louima and the shootings of Amadou Diallo and Patrick Dorismond, each of whom were young black men mistakenly targeted by the police. We address this dispute by estimating the extent of racially disparate impacts of what came to be known as the “New York strategy,” and assess whether the policy was racially neutral when compared to
the central claim that race-specific stop rates reflect nothing more than race-specific crime rates.

We present a statistical study of the rates at which New Yorkers of different ethnic groups are stopped by the police on the city streets. This study is based on work performed with the New York State Attorney General’s Office (Spitzer, 1999) and reviewed by the U.S. Commission on Civil Rights (2000). Two key issues addressed in our study are the baselines used to compare rates of stops (recognized as a problem by Miller, 2000, Walker, 2001, and Smith and Alpert, 2002) and local variation in the intensity of policing (as performed by the Street Crimes Unit and implicitly recommended by Wilson and Kelling, 1982, and others). We use multilevel modeling (see Raudenbush and Bryk, 2002, for a general overview and Sampson, Raudenbush, and Earls, 1997, Sampson and Raudenbush, 1999, and Weidner, Frase, and Pardoe, 2004, for examples in studies of crime) to adjust for local variation so as to better compare the rates of police stops of different ethnic groups in New York City.

Were the police disproportionately stopping ethnic minorities? We address this question in several different ways using data on police stops, and we conclude that members of minority groups were stopped more often than whites, both in comparison to their overall population and to the estimated rates of crime they have committed. We do not, however, necessarily conclude that the NYPD is engaged in discriminatory practices. The summary statistics we study here cannot directly address questions of harassment or discrimination but rather reveal statistical patterns that are relevant to these questions.

2 Background

2.1 Race, neighborhoods, and police stops

Nearly a century of legal and social trends set the stage for the current debate on race and policing. Historically, close surveillance by police has been a part of everyday life for African Americans and other minority groups (see, for example, Musto, 1973, and Kennedy, 1997). In recent decades, the U.S. Supreme Court has sanctioned border interdictions of persons of Mexican or Hispanic ethnicity to halt illegal immigration (U.S. v. Martinez-Fuerte, 1976), as well as the racial components of drug courier profiling by airlines (U.S. v. Harvey, 1994).

Moreover, the legal standard to regulate the constitutionality of police conduct in citizen stops derives from Terry v. Ohio (1968), which involved a pedestrian stop that established the parameters of the “reasonable suspicion” standard for police conduct in detaining citizens for purposes of search or arrest. Recently, the courts have expanded the concept
of “reasonable suspicion” to include location as well as the individual’s behavior. In Illinois v. Wardlow (2000), the Supreme Court noted that although an individual’s presence in a “high crime area” does not meet the standard for a particularized suspicion of criminal activity, a location’s characteristics are relevant to determining whether a behavior is sufficiently suspicious to warrant further investigation. Since “high crime areas” often are areas with concentrations of minority citizens (Massey and Denton, 1993), this logic places minority neighborhoods at risk for elevating the suspiciousness of its residents.

Recent studies suggest that both the racial characteristics of the suspect and the racial composition of the suspect’s neighborhood influence police decisions to stop, search or arrest a suspect. In some cases, suspect race interacts with neighborhood characteristics (Reiss, 1971, Bittner, 1976). But police also may substitute racial characteristics of communities for racial characteristics of individuals, resulting in elevated stop rates in neighborhoods with high concentrations of minority populations. For example, in a study of police practices in three cities, Smith (1986) showed that suspects in poor neighborhoods were more likely to be arrested, in an analysis controlling for suspect behavior and the type of crime. Suspects’ race and racial composition of the suspect’s neighborhood were also significant predictors of police response. Coercive police responses may relate to the perception that poor neighborhoods may have limited capacity for social control and self-regulation. This strategy was formalized in the influential “Broken Windows” essay of Wilson and Kelling (1982), who argued that police responses to disorder were critical to communicate intolerance for crime and to halt its contagious spread. This claim has been disputed, however (see Harcourt, 1998).

2.2 Approaches to studying data on police stops

Recent empirical evidence on police stops support perceptions of minority citizens that police disproportionately stop African American and Hispanic motorists, and that once stopped, these citizens are more likely to be searched or arrested. For example, using a nationwide probability sample, Langan et al. (2001) showed that African-Americans were far more likely than other Americans to report being stopped on the highways by police in 1999. Minority drivers were also more likely to report being ticketed, arrested, handcuffed, or searched by police, and that they more often were threatened with force or had force used against them.

Traffic violations often serve as the rationale or pretext for stops of motorists, just as “suspicious behavior” is the spark for pedestrian stops. As with traffic violations, the range
of suspicious behaviors is broad enough that it is a challenge to identify an appropriate baseline to which to compare the rate of stops (see Miller, 2000, and Smith and Alpert, 2002). Pedestrian stops are at the very core of policing, used to enforce narcotics and weapons laws, to identify fugitives or other persons for whom warrants may be outstanding, to investigate reported crimes and “suspicious” behavior, and to improve community quality of life. For the NYPD, a “stop” intervention provides an occasion for the police to have contact with persons presumably involved in low level criminality without having to effect a formal arrest, and under the lower constitutional standard of “reasonable suspicion” (Spitzer, 1999). Indeed, because low level “quality of life” and misdemeanor offenses were more likely to be committed in the open, the “reasonable suspicion” standard was more easily satisfied in these sorts of crimes (Rudovsky, 2001).

Measuring the extent to which police engage in selective or racially discriminatory enforcement requires tests of the extent of racial disparities in stops after controlling for race-specific rates of the targeted behaviors in patrolled areas. This requires estimates of the supply of individuals who are engaged in the targeted behaviors (see Miller, 2000, Fagan and Davies, 2000, Walker, 2001, and Smith and Alpert, 2002). We discuss this issue in our main analysis.

An alternative strategy is to simply compare “hit rates,” or efficiencies—the proportion of stops that yield positive results. This sort of analysis was performed by Persico, Knowles, and Todd (2001), Ayres (2002), and Gross and Barnes (2002) to study highway stops, and we apply it to NYPD stops in Section 5.3 of this paper. This approach bypasses the question of who is stopped (and for what reason), and instead looks only at disparate impacts or outcomes for different groups.

3 Data

3.1 “Stop and frisk” in New York City

The New York Police Department has a policy of keeping records on stops (on “UF-250 Forms”), and this information was collated for all stops (about 175,000 in total) from January, 1998, through March, 1999 (Spitzer, 1999). The police are not required to fill out the form for every stop. There are certain conditions under which the police are required to fill out the form, and these “mandated stops” represent 72% of the stops recorded, with the remaining reports being of stops for which reporting was optional. To address concerns about possible selection bias in the nonmandated stops, we repeated our analyses for the
mandated stops only, and the results were essentially unchanged.

The UF-250 form has a place for the police officer to record the “Factors Which Caused Officer to Reasonably Suspect Person Stopped (include information from third persons and their identity, if known).” We examined a citywide random sample of 5000 of these forms and coded the reasons for the stops. The following examples (from Spitzer, 1999) illustrate the rules that motivated police decisions to stop suspects, and show the social and behavioral factors that police apply in the process of forming reasonable suspicion:

“At TPO [time and place of occurrence] male was with person who fit description of person wanted for GLA [grand larceny auto] in 072 pct. log . . . upon approach male discarded small coin roller which contained 5 bags of alleged crack.”

“At T/P/O R/O [reporting officer] did observe below named person along w/3 others looking into numerous parked vehicles. R/O did maintain surveillance on individuals for approx. 20 min. Subjects subsequently stopped to questioned w/ neg results.”

“Slashing occurred at Canal street; person fit description; person was running.”

“Several men getting in and out of a vehicle several times.”

“Def. Did have on a large bubble coat with a bulge in right pocket.”

“Person stopped did stop walking and reverse direction upon seeing police. Attempted to enter store as police approached; Frisked for safety.”

Based on Federal and state law, some of these reasons for stopping a person are constitutional and some are not. For example, courts have ruled that a bulge in the pocket is not enough reason for the police to stop a person without his or her consent, and that walking away from the police is not a sufficient reason to stop and frisk a person. However, if the police observe illegal activity, weapons (including “waistband bulges”), a person who fits a description, or suspicious behavior in a crime area, then stops and frisks have been ruled constitutional (Spitzer, 1999).

The New York State Attorney General’s office used rules such as these to characterize the rationales for 61% of the stops in the sample as articulating a “reasonable suspicion” that would justify a lawful stop, 15% of the stops as not articulating a reasonable suspicion, and 24% as giving insufficient information to decide. For the controversial Street Crimes
Unit, 23% of stops were judged to not articulate a reasonable suspicion. (There was no strong pattern by ethnicity here: the rate of stops judged to be unreasonable were about the same for all ethnic groups.) The stops judged to be without “reasonable suspicion” indeed seemed to be weaker, in that only 1 in 29 of these stops led to arrests, as compared to 1 in 7 of the stops with reasonable suspicion.

3.2 Aggregate rates of stops for each ethnic group

With this as background, we analyze the entire stop-and-frisk dataset to see to what extent different ethnic groups were stopped by the police. We focus on blacks (African-Americans), hispanics (Latinos), and whites (European-Americans). The ethnic categories are as recorded by the police making the stops. We exclude members of other ethnic groups (about 4% of the stops) because of the likelihood of ambiguities in classifications. (With such a low frequency of “other,” even a small rate of misclassifications could cause large distortions in the estimates for that group. For example, if only 4% of blacks, hispanics, and whites were mistakenly labeled as “other,” then this would nearly double the estimates for the “other” category while having very little effects on the three major groups. (See Hemenway, 1997, for an extended discussion of the problems that misclassifications can cause in estimates of a small fraction of the population.)

Blacks and hispanics represented 51% and 33% of the stops, respectively, despite comprising only 26% and 24%, respectively, of the population of the city based on the 1990 Census. (The population proportions change little if we use 1998 population estimates and count only males aged 15–30, which is arguably a more reasonable baseline.)

Perhaps a more relevant comparison, however, is to the number of crimes committed by members of each ethnic group. For example, then-New York City Police Commissioner Howard Safir stated (Safir, 1999),

“The racial/ethnic distribution of the subjects of ‘stop’ and frisk reports reflects the demographics of known violent crime suspects as reported by crime victims. Similarly, the demographics of arrestees in violent crimes also correspond with the demographics of known violent crime suspects.”

Data on actual crimes are not available, of course, so as a proxy we use the number of arrests within New York City in the previous year, 1997, as recorded by the Division of Criminal Justice Services (DCJS) of New York State. These were deemed to be the best available measure of local crime rates categorized by ethnicity, and they directly address
concerns such as Safir’s that stop rates be related to crime suspects. We use the previous year’s DCJS arrest rates to represent the frequency of crimes that the police might suspect were committed by members of each group. When compared in that way, the ratio of stops to DCJS arrests was 1.24 for whites, 1.54 for blacks, and 1.72 for hispanics: based on this comparison, blacks are stopped 23% and hispanics 39% more often than whites.

4 Model

The summaries so far describe average rates for the whole city. Suppose the police make more stops in high-crime areas but treat the different ethnic groups equally within any locality. Then the citywide ratios could show strong differences between ethnic groups even if stops are entirely determined by location rather than ethnicity. In order to separate these two kinds of predictors, we perform multilevel analyses using the city’s 75 precincts. Allowing precinct-level effects is consistent with theories of policing such as “broken windows” that emphasize local, neighborhood-level strategies (Wilson and Kelling, 1982, Skogan, 1990). Because it is possible that the patterns are systematically different in neighborhoods with different ethnic compositions, we divide the precincts into three categories in terms of their black population: precincts that were less than 10% black, 10%-40% black, and over 40% black. We also account for variation in stop rates between the precincts within each group. Each of the three categories represents roughly 1/3 of the precincts in the city, and we perform separate analyses for each set.

4.1 Hierarchical Poisson regression model

For each ethnic group \(e = 1, 2, 3 \) and precinct \(p \), we model the number of stops \(y_{ep} \) using an overdispersed Poisson regression with indicators for ethnic groups, a hierarchical model for data within precincts, and using \(n_{ep} \), the number of DCJS arrests for that ethnic group in that precinct (multiplied by 15/12 to scale to a fifteen-month period), as a baseline or offset:

\[
\begin{align*}
y_{ep} & \sim \text{Poisson} \left(\frac{15}{12} n_{ep} e^\mu + \alpha_e + \beta_p + \epsilon_{ep} \right) \\
\beta_p & \sim \text{N}(0, \sigma_\beta^2) \\
\epsilon_{ep} & \sim \text{N}(0, \sigma_\epsilon^2),
\end{align*}
\]

where the coefficients \(\alpha_e \) (which we constrain to sum to 0) control for ethnic groups, the \(\beta_p \)’s adjust for variation among precincts, and the \(\epsilon_{ep} \)’s allow for overdispersion. Of most interest
are the exponentiated coefficients \(\exp(\alpha_e) \), which represent relative rates of stops compared to arrests, after controlling for precinct. The parameter \(\sigma_B \) represents variation in the rates of stops among precincts, and \(\sigma_c \) represents variation in the data beyond that explained by the Poisson model. To the extent that \(\sigma_c \) is estimated to be greater than 0, this is evidence of overdispersion (McCullagh and Nelder, 1989). We fit the model using Bayesian inference with a noninformative uniform prior distribution on the parameters \(\mu, \alpha, \sigma_B, \sigma_c \).

By comparing to arrest rates, we can also separately analyze stops associated with different sorts of crimes. We do a separate comparison for each of four types of offenses (“suspected charges” as characterized on the UF-250 form): violent crimes, weapons offenses, property crimes, and drug crimes. For each, we model the number of stops \(y_{ep} \) by ethnic group \(e \) and precinct \(p \) for that crime type, using as a baseline the DCJS arrest rates \(n_{ep} \) for that crime type.

We thus estimate the model (1) for twelve separate subsets of the data, corresponding to the four crime types and the three categories of precincts (less than 10% black population, 10–40% black, and over 40% black). The computations can be easily performed using the Bayesian software Bugs (Spiegelhalter et al., 1994, 2003), which implements Markov chain Monte Carlo simulation, as called from R (R Project, 2000, Gelman, 2003). For each fit, we run several independent Markov chains from different starting points, stopping when the simulations from each chain alone are as variable as the simulations of all the chains mixed together (Gelman and Rubin, 1992). We then gather the last half of the simulated sequences, which can be used to compute posterior estimates and standard errors.

4.2 Alternative model specifications

In addition to fitting model (1) as described above, we consider two forms of alternative specifications, first fitting the same model but changing the batching of precincts, and second altering the role played in the model by the previous year’s arrests. We compare the fits under these alternative models to assess the sensitivity of our findings to the details of model specification.

Modeling variability across precincts

The batching of precincts into three categories is convenient and makes sense—neighborhoods with different levels of minority populations differ in many ways, and fitting the model separately to each group of precincts is a way to include contextual effects. However, there is an arbitrariness to the division. We explore this by portioning the precincts into
different numbers of categories and seeing how the model estimates change.

Another approach to controlling for systematic variation among precincts is to include precinct-level predictors, which can be included along with the individual precinct-level effects in the multilevel model (see, e.g., Raudenbush and Bryk, 2000). As discussed earlier, the precinct-level information that is of greatest interest, and also that has greatest potential to affect our results, is the ethnic breakdown of the population. Thus we consider as regression predictors the proportion black and hispanic in the precinct, replacing model (1) by,

\[y_{ep} \sim \text{Poisson} \left(\frac{15}{12} n_{ep} e^{\mu + \alpha_e + \zeta_1 z_{1p} + \zeta_2 z_{2p} + \beta_p + \epsilon_{ep}} \right), \]

(2)

where \(z_{1p} \) and \(z_{2p} \) represent the proportion of the population in precinct \(p \) that are black and hispanic, respectively. We also consider variants of model (2) including the quadratic terms, \(z_{1p}^2 \), \(z_{2p}^2 \), and \(z_{1p} z_{2p} \), to examine sensitivity to nonlinearity.

Modeling the relation of stops to previous year’s arrests

We also consider different ways of using the number of DCJS arrests \(n_{ep} \) in the previous year, which plays the role of a baseline (or offset, in generalized linear models terminology) in model (1). Including the past arrest rate as an offset makes sense since we are interested in the rate of stops per crime, and we are using past arrests as a proxy for crime rate and for police expectations about demographics of perpetrators. However, another option is to include the logarithm of the number of past arrests as a linear predictor instead:

\[y_{ep} \sim \text{Poisson} \left(\frac{15}{12} e^{\gamma \log n_{ep} + \mu + \alpha_e + \beta_p + \epsilon_{ep}} \right). \]

(3)

Model (3) reduces to the offset-model (1) if \(\gamma = 1 \). We can thus fit (3) and see if the inferences for \(\alpha_e \) change compared to the earlier model that implicitly fixes \(\gamma \) to 1.

We can take this idea further by modeling past arrests as a proxy rather than the actual crime rate. We try this in two ways, for each labeling the true crime rate for each ethnicity in each precinct as \(\theta_{ep} \), with separate hierarchical Poisson regressions for this year’s stops and last year’s arrests (as always, including the factor \(\frac{15}{12} \) to account for our 15 months of stop data). In the first formulation, we model last year’s arrests as Poisson distributed with mean \(\theta \):

\[y_{ep} \sim \text{Poisson} \left(\frac{15}{12} \theta_{ep} e^{\mu + \alpha_e + \beta_p + \epsilon_{ep}} \right) \]

\[n_{ep} \sim \text{Poisson}(\theta_{ep}) \]

\[\log \theta_{ep} = \log N_{ep} + \tilde{\alpha}_e + \tilde{\beta}_p + \tilde{\epsilon}_{ep}. \]

(4)
Here we are using N_{ep}, the population of ethnic group e in precinct p, as a baseline for the model of crime frequencies. The second-level error terms $\tilde{\beta}$ and $\tilde{\epsilon}$ are given normal hyperprior distributions as with model (1).

Our second two-stage model is similar to (4) but moving the new error term $\tilde{\epsilon}$ to the model for n_{ep}:

$$
y_{ep} \sim \text{Poisson}\left(\frac{N_{ep}}{12} \theta_{ep} e^{\mu+\alpha_e+\beta_p+\epsilon_{ep}} \right)
$$

$$
n_{ep} \sim \text{Poisson}(\theta_{ep} e^{\tilde{\epsilon}_{ep}})
$$

$$
\log \theta_{ep} = \log N_{ep} + \tilde{\alpha}_e + \tilde{\beta}_p.
$$

Under this model, arrest rates n_{ep} are equal to the underlying crime rates, θ_{ep}, on average, but with overdispersion compared to the Poisson error distribution.

5 Results

5.1 Primary regression analysis

Table 1 shows the estimates from model (1) fit to each of four crime types in each of three categories of precinct. The random-effects standard deviations σ_β and σ_ϵ are substantial, indicating the relevance of hierarchical modeling for these data. (Recall that these effects are all on the logarithmic scale, so that an effect of 0.3, for example, corresponds to a multiplicative effect of $\exp(0.3) = 1.35$, or a 35% increase in the probability of being stopped.)

The parameters of most interest are the rates of stop (compared to previous year’s arrests) for each ethnic group, $e^{\mu+\alpha_e}$, for $e = 1, 2, 3$. We display these graphically in Figure 1. Stops for violent crimes and weapons offenses were the most controversial aspect of the stop-and-frisk policy (and represent over two-thirds of the stops) but for completeness we display all four categories of crime here.

Figure 1 shows that, for the most frequent categories of stops—those associated with violent crimes and weapons offenses—blacks and hispanics were much more likely to be stopped than whites, in all categories of precincts. For violent crimes, blacks and hispanics were stopped 2.5 times and 1.9 times as often as whites, respectively, and for weapons crimes, blacks and hispanics were stopped 1.8 times and 1.6 times as often as whites. In the less common categories of stop, whites were slightly more often stopped for property crimes and more often stopped for drug crimes, in proportion to their previous year’s arrests in any given precinct.
5.2 Alternative forms of the model

Fitting the alternative models described in Section 4.2 yielded similar results to our main analysis. We discuss each alternative model in turn.

Figure 2 displays the estimated rates of stops for violent crimes, compared to the previous year’s arrests, for each of the three ethnic groups, for analyses dividing the precincts into 5, 10, and 15 categories ordered by percent black population in precinct. For simplicity, we only give results for violent crimes; these are typical of the alternative analyses for all four crime types. For each of the three graphs in Figure 2, the model was separately estimated for each batch of precincts, and these estimates are connected in a line for each ethnic group. Compared to the upper-left plot in Figure 1, which shows the results from dividing the precincts into three categories, we see that dividing into more groups adds noise to the estimation but does not change the overall pattern of differences between the groups.

Table 2 shows the results from model (2), which is fit to all 75 precincts but controls for the proportion black and proportion hispanic in precincts. The inferences are similar to those obtained from the main analysis discussed in Section 5.1. Including quadratic terms and interactions in the precinct-level model (2), and including the precinct-level predictors in the models fit to each of the three subsets of the data, similarly had little effect on the parameters of interest, \(\alpha_e \).

Table 3 displays parameter estimates from the models that differently incorporate the previous year’s arrest rates \(n_{ep} \). For conciseness we display results for violent crimes only, for simplicity including all 75 precincts in the models. (Similar results are obtained when fitting the model separately in each of three categories of precincts, and for the other crime types.) The first two columns of Table 3 shows the result from our main model (1) and the alternative model (3), which includes \(\log n_{ep} \) as a regression predictor. The two models differ only in that the first restricts \(\gamma \) to be 1, but as we can see, \(\gamma \) is estimated very close to 1 in the regression formulation, and the coefficients \(\alpha_e \) are essentially unchanged. (The intercept changes a bit because \(\log n_{ep} \) does not have a mean of 0.)

The last two columns in Table 3 show the estimates from the two-stage regression models (4) and (5). The models differ in their estimates of the variance parameters \(\sigma_\beta \) and \(\sigma_e \), but the estimates of the key parameters \(\alpha_e \) are essentially the same in the original model.

We also performed analyses including indicators for the month of arrest. Rates of stops were roughly constant over the 15-month period and did not add anything informative to the comparison of ethnic groups.
5.3 Proportion of stops that led to arrests

A different way to compare ethnic groups is to look at the fraction of stops on the street that lead to arrests. Most stops do not lead to arrests, and most arrests do not come from stops. In the analysis described above, we studied the rate at which the police stopped people of different groups. Now we look briefly at what happens with these stops.

In the period for which we have data, 1 in 7.9 whites stopped were arrested, as compared to approximately 1 in 8.8 hispanics and 1 in 9.5 blacks. These data are consistent with our general conclusion that the police are disproportionately stopping minorities: the stops of whites are more “efficient” and are more likely to lead to arrests, whereas for blacks and hispanics, the police are stopping more indiscriminately, and fewer of the people stopped in these broader sweeps are actually arrested. It is perfectly reasonable for the police to make many stops that do not lead to arrests; the issue here is the comparison between ethnic groups.

This can also be understood in terms of simple economic theory (following the reasoning of Persico, Knowles, and Todd, 2001, for police stops for suspected drugs). It is reasonable to suppose a diminishing return for stops in the sense that, at some point, little benefit will be gained by stopping additional people. If the gain is approximately summarized by arrests, then diminishing returns mean that the probability that a stop will lead to an arrest—in economic terms, the marginal gain from stopping one more person—will decrease as the number of people stopped increases. The stops of blacks and hispanics were less “efficient” than those of whites, suggesting that the police have been using less rigorous standards when stopping members of minority groups. We found similar results when separately analyzing stops during the daytime and nighttime.

This analysis can be criticized as unfair to the police, who are “damned if they do, damned if they don’t”: relatively few of the stops of minorities led to arrests, and thus we conclude that police were more willing to stop minority group members with less reason. But we could also make the argument the other way around: a relatively high rate of whites stopped were arrested, so we could conclude that the police are biased against whites in the sense of arresting them too often. We do not believe this latter interpretation, but it is hard to rule it out from these data alone.

That is why we consider this part of the study to be only supporting evidence. Our main analysis found that blacks and hispanics were stopped disproportionately often (compared to their population or their crime rate, as measured by their rate of valid arrests in the previous year), and the secondary analysis of the “arrest efficiency” of these stops is consistent with
Conclusions

In the period for which we had data, the NYPD’s records indicate that they were stopping blacks and hispanics more often than whites, both in comparison to the populations of these groups and to the best estimates of the rate of crimes committed by each group. After controlling for precincts, the pattern still holds. More specifically, for violent crimes, blacks and hispanics are stopped about twice as often as whites are for violent crimes and weapons offenses. In contrast, for the less common stops for property and drug crimes, whites and hispanics are more often stopped than blacks, in comparison to the arrest rate for each ethnic group.

A related piece of evidence is that stops of blacks and hispanics were less likely than those of whites to lead to arrest, which suggests that the standards were more relaxed for stopping minority group members. Two different scenarios might explain the lower “hit rates” for non-whites, one which suggests targeting of minorities while another suggests dynamics of racial stereotyping and a more passive form of racial preference. In the first scenario, police possibly used wider discretion and more relaxed constitutional standards in deciding to stop minority citizens. This explanation would conform to the scenario of “pretextual” stops discussed in several recent studies of motor vehicle stops (for example, Lundman and Kaufman, 2003), and suggest that higher stops rates were intentional and purposive. Alternatively, police could also simply more often form the perception of “suspicion” based on a broader interpretation of the social cues that capture police attention and evoke official reactions. The latter conforms more closely to a social psychological process of racial stereotyping where the attribution of suspicion is more readily attached to specific behaviors and contexts for minorities than it might be for whites (Thompson, 1999).

Our findings do not necessarily imply the NYPD was acting in an unfair or racist manner. It is quite reasonable to suppose that effective policing requires many people to be stopped and questioned in order to gather information about any given crime.

In the context of some difficult relations between the police and ethnic minority communities in New York City, it is useful to have some quantitative sense of the issues under dispute. Given that there have been complaints about the frequency with which the police have been stopping blacks and hispanics, it is relevant to know that this is indeed a statistical pattern. The police department then has the opportunity to explain their policies to the affected communities.
References

Harcourt, B. E. (1998). Reflecting on the subject: a critique of the social influence concep-
tion of deterrence, the broken windows theory, and order-maintenance policing New

Cambridge Mass.: Harvard University Press.

Harris, D. A. (1999). The stories, the statistics, and the law: why “driving while black”

New Press.

www.aclu.org/court/lamberth.html.

between police and the public: findings from the 1999 national survey (NCJ 184957).

Lundman, R. J., and Kaufman, R. L. (2003). Driving while black: effects of race, ethnicity,

the Underclass.* Cambridge, Mass.: Harvard University Press.

York: Chapman and Hall.

Series Paper No. 121, Home Office Research, Development and Statistics Directorate,
United Kingdom.

<table>
<thead>
<tr>
<th>Proportion black in precinct</th>
<th>Parameter</th>
<th>Violent</th>
<th>Weapons</th>
<th>Property</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10%</td>
<td>intercept</td>
<td>-0.83 (0.09)</td>
<td>0.19 (0.10)</td>
<td>-0.66 (0.21)</td>
<td>-1.69 (0.17)</td>
</tr>
<tr>
<td></td>
<td>α_1 [blacks]</td>
<td>0.39 (0.05)</td>
<td>0.18 (0.04)</td>
<td>-0.33 (0.06)</td>
<td>-0.13 (0.09)</td>
</tr>
<tr>
<td></td>
<td>α_2 [hispanics]</td>
<td>0.14 (0.05)</td>
<td>0.12 (0.04)</td>
<td>0.33 (0.06)</td>
<td>0.21 (0.08)</td>
</tr>
<tr>
<td></td>
<td>α_3 [whites]</td>
<td>-0.52 (0.05)</td>
<td>-0.30 (0.04)</td>
<td>0.00 (0.06)</td>
<td>-0.08 (0.08)</td>
</tr>
<tr>
<td></td>
<td>σ_β</td>
<td>0.38 (0.07)</td>
<td>0.48 (0.08)</td>
<td>1.19 (0.18)</td>
<td>0.83 (0.14)</td>
</tr>
<tr>
<td></td>
<td>σ_ϵ</td>
<td>0.31 (0.04)</td>
<td>0.24 (0.03)</td>
<td>0.34 (0.04)</td>
<td>0.48 (0.06)</td>
</tr>
<tr>
<td>10–40%</td>
<td>intercept</td>
<td>-0.98 (0.09)</td>
<td>0.42 (0.09)</td>
<td>-0.96 (0.24)</td>
<td>-1.82 (0.18)</td>
</tr>
<tr>
<td></td>
<td>α_1 [blacks]</td>
<td>0.40 (0.04)</td>
<td>0.24 (0.04)</td>
<td>-0.15 (0.06)</td>
<td>-0.03 (0.05)</td>
</tr>
<tr>
<td></td>
<td>α_2 [hispanics]</td>
<td>0.07 (0.04)</td>
<td>0.12 (0.04)</td>
<td>0.24 (0.06)</td>
<td>0.13 (0.05)</td>
</tr>
<tr>
<td></td>
<td>α_3 [whites]</td>
<td>-0.47 (0.05)</td>
<td>-0.36 (0.04)</td>
<td>-0.10 (0.06)</td>
<td>-0.10 (0.06)</td>
</tr>
<tr>
<td></td>
<td>σ_β</td>
<td>0.46 (0.08)</td>
<td>0.41 (0.07)</td>
<td>1.22 (0.19)</td>
<td>0.95 (0.14)</td>
</tr>
<tr>
<td></td>
<td>σ_ϵ</td>
<td>0.24 (0.03)</td>
<td>0.24 (0.03)</td>
<td>0.36 (0.04)</td>
<td>0.30 (0.04)</td>
</tr>
<tr>
<td>> 40%</td>
<td>intercept</td>
<td>-1.56 (0.12)</td>
<td>0.30 (0.12)</td>
<td>-1.14 (0.21)</td>
<td>-2.62 (0.12)</td>
</tr>
<tr>
<td></td>
<td>α_1 [blacks]</td>
<td>0.44 (0.06)</td>
<td>0.32 (0.07)</td>
<td>-0.05 (0.09)</td>
<td>0.13 (0.06)</td>
</tr>
<tr>
<td></td>
<td>α_2 [hispanics]</td>
<td>0.10 (0.06)</td>
<td>0.14 (0.07)</td>
<td>0.08 (0.09)</td>
<td>0.10 (0.07)</td>
</tr>
<tr>
<td></td>
<td>α_3 [whites]</td>
<td>-0.55 (0.08)</td>
<td>-0.46 (0.08)</td>
<td>-0.03 (0.10)</td>
<td>-0.22 (0.08)</td>
</tr>
<tr>
<td></td>
<td>σ_β</td>
<td>0.49 (0.09)</td>
<td>0.48 (0.11)</td>
<td>0.95 (0.18)</td>
<td>0.54 (0.12)</td>
</tr>
<tr>
<td></td>
<td>σ_ϵ</td>
<td>0.24 (0.05)</td>
<td>0.37 (0.05)</td>
<td>0.42 (0.07)</td>
<td>0.29 (0.07)</td>
</tr>
</tbody>
</table>

Table 1: Estimates and standard errors for the constant term μ, ethnicity parameters α_ϵ, and the precinct-level and precinct-by-ethnicity level variance parameters σ_β and σ_ϵ, for the hierarchical Poisson regression model (1), fit separately to three categories of precinct and four crime types. The estimates of $e^{\mu+\alpha_\epsilon}$ are displayed graphically in Figure 1, and alternative model specifications are shown in Table 3.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Violent</th>
<th>Weapons</th>
<th>Property</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>−0.66 (0.08)</td>
<td>0.08 (0.11)</td>
<td>−0.14 (0.24)</td>
<td>−0.98 (0.17)</td>
</tr>
<tr>
<td>(\alpha_1) [blacks]</td>
<td>0.41 (0.03)</td>
<td>0.24 (0.03)</td>
<td>−0.19 (0.04)</td>
<td>−0.02 (0.04)</td>
</tr>
<tr>
<td>(\alpha_2) [hispanics]</td>
<td>0.10 (0.03)</td>
<td>0.12 (0.03)</td>
<td>0.23 (0.04)</td>
<td>0.15 (0.04)</td>
</tr>
<tr>
<td>(\alpha_3) [whites]</td>
<td>−0.51 (0.03)</td>
<td>−0.36 (0.03)</td>
<td>−0.05 (0.04)</td>
<td>−0.13 (0.04)</td>
</tr>
<tr>
<td>(\zeta_1) [coeff for prop. black]</td>
<td>−1.22 (0.18)</td>
<td>0.10 (0.19)</td>
<td>−1.11 (0.45)</td>
<td>−1.71 (0.31)</td>
</tr>
<tr>
<td>(\zeta_2) [coeff for prop. hispanic]</td>
<td>−0.33 (0.23)</td>
<td>0.71 (0.27)</td>
<td>−1.50 (0.57)</td>
<td>−1.89 (0.41)</td>
</tr>
</tbody>
</table>

Table 2: Estimates and standard errors for the parameters of model (2) that includes proportion black and hispanic as precinct-level predictors, fit to all 75 precincts. The results for the parameters of interest, \(\alpha_e \), are similar to those obtained by fitting the basic model separately to each of three categories of precincts, as displayed in Table 1 and Figure 1. As before, the model is fit separately to the data from four different crime types.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Offset</th>
<th>Regression</th>
<th>two-stage (4)</th>
<th>two-stage (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>−1.08 (0.06)</td>
<td>−0.94 (0.16)</td>
<td>−1.07 (0.06)</td>
<td>−1.13 (0.07)</td>
</tr>
<tr>
<td>(\alpha_1) [blacks]</td>
<td>0.40 (0.03)</td>
<td>0.41 (0.03)</td>
<td>0.40 (0.03)</td>
<td>0.42 (0.08)</td>
</tr>
<tr>
<td>(\alpha_2) [hispanics]</td>
<td>0.10 (0.03)</td>
<td>0.10 (0.03)</td>
<td>0.10 (0.03)</td>
<td>0.14 (0.09)</td>
</tr>
<tr>
<td>(\alpha_3) [whites]</td>
<td>−0.50 (0.03)</td>
<td>−0.51 (0.03)</td>
<td>−0.50 (0.03)</td>
<td>−0.56 (0.09)</td>
</tr>
<tr>
<td>(\gamma) [coeff for log (n_{ep})]</td>
<td>0.97 (0.03)</td>
<td>0.51 (0.05)</td>
<td>0.51 (0.05)</td>
<td>0.51 (0.05)</td>
</tr>
</tbody>
</table>

Table 3: Estimates and standard errors for parameters under model (1) and three alternative specifications for the previous year’s arrests \(n_{ep} \): treating \(\log(n_{ep}) \) as a predictor in the Poisson regression model (3), and the two-stage models (4) and (5). For simplicity, results are displayed for violent crimes only, for the model fit to all 75 precincts. The three \(\alpha_e \) parameters are nearly identical under all four models, with the specification affecting only the intercept.
Figure 1: Estimated rates at which people of different ethnic groups were stopped for different categories of crime, as estimated from hierarchical regressions using previous year's arrests as a baseline and controlling for differences between precincts. Separate analyses were done for the precincts that had less than 10%, 10%–40%, and more than 40% black population. For the most common stops—violent crimes and weapons offenses—the top, middle, and lower lines correspond to blacks, Hispanics, and whites, respectively. These graphs show the same general patterns as the model with 3 categories. Larger crimes are represented as squares, medium crimes as circles, and smaller crimes as triangles. Numerical estimates and standard errors appear in Table 1.

Figure 2: Estimated rates at which people of different ethnic groups were stopped for violent crimes, as estimated from models dividing precincts into 5, 10, and 15 categories. For each graph, the top, middle, and lower lines correspond to blacks, Hispanics, and whites, respectively. These graphs show the same general patterns as the model with 3 categories. Larger crimes are represented as squares, medium crimes as circles, and smaller crimes as triangles. Numerical estimates and standard errors appear in Table 1.